The Computational Complexity of Some Problems of Linear Algebra (Extended Abstract)

نویسندگان

  • Jonathan F. Buss
  • Gudmund Skovbjerg Frandsen
  • Jeffrey Shallit
چکیده

We consider the computational complexity of some problems dealing with matrix rank. Let E ; S be subsets of a commutative ring R. we want to determine maxrank S (M) = max (a 1 ;a 2 ;:::;at)2S t rank M (a 1 ; a 2 ; : : : a t) and minrank S (M) = min (a 1 ;a 2 ;:::;at)2S t rank M (a 1 ; a 2 ; : : : a t): There are also variants of these problems that specify more about the structure of M , or instead of asking for the minimum or maximum rank, ask if there is some substitution of the variables that makes the matrix invertible or noninvertible. Depending on E ; S , and on which variant is studied, the complexity of these problems can range from polynomial-time solvable to random polynomial-time solvable to NP-complete to PSPACE-solvable to unsolvable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of solution of Schrodinger equation in extended Colombeau algebra

In this paper, we establish the existence and uniqueness result of the linear Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra. The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau sense.

متن کامل

On the Complexity of the Extended Euclidean Algorithm (extended abstract)

Euclid’s algorithm for computing the greatest common divisor of 2 numbers is considered to be the oldest proper algorithm known ([10]). This algorithm can be amplified naturally in various ways. The GCD problem for more than two numbers is interesting in its own right. Thus, we can use Euclid’s algorithm recursively to compute the GCD of more than two numbers. Also, we can do a constructive com...

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

On some open problems in cone metric space over Banach algebra

In this paper we prove an analogue of Banach and Kannan fixed point theorems by generalizing the Lipschitz constat $k$, in generalized Lipschitz mapping on cone metric space over Banach algebra, which are answers for the open problems proposed by Sastry et al, [K. P. R. Sastry, G. A. Naidu, T. Bakeshie, Fixed point theorems in cone metric spaces with Banach algebra cones, Int. J. of Math. Sci. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 58  شماره 

صفحات  -

تاریخ انتشار 1997